Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(2): e0188823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289104

RESUMEN

Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.


Asunto(s)
Citomegalovirus , Interacciones Microbiota-Huesped , Diana Mecanicista del Complejo 1 de la Rapamicina , Monocitos , Biosíntesis de Proteínas , ARN Mensajero , Humanos , Apoptosis , Supervivencia Celular/genética , Citomegalovirus/crecimiento & desarrollo , Citomegalovirus/patogenicidad , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/transmisión , Infecciones por Citomegalovirus/virología , Retroalimentación Fisiológica , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Monocitos/citología , Monocitos/metabolismo , Monocitos/virología , Fosfatidilinositol 3-Quinasas/metabolismo , Polirribosomas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Sirtuina 1/biosíntesis , Sirtuina 1/genética , Sirtuina 1/metabolismo , Internalización del Virus
2.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732204

RESUMEN

Establishing a non-productive quiescent/silent infection within monocytes is essential for spread of human cytomegalovirus (HCMV). Yet, how HCMV establishes a quiescent infection in monocytes remains unclear. US28 is a viral G protein-coupled receptor (GPCR) essential for silent infections within cells of the myeloid lineage. We found virion-associated US28 was rapidly delivered to monocytes, while de novo synthesized US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic replication cycle. Mechanistically, viral entry of US28Δ phosphorylated Akt at both serine 473 (S473) and threonine 308 (T308), which contrasted with the site-specific phosphorylation of Akt at S473 following WT infection. Preventing Akt bi-phosphorylation prevented lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of WT infection. Our data demonstrate that virion-delivered US28 fine-tunes Akt activity to permit HCMV infection to enter a quiescent state following primary infection of monocytes.

3.
Methods Mol Biol ; 2244: 199-211, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33555588

RESUMEN

Human cytomegalovirus (HCMV) entry into host cells is a complex process involving interactions between an array of viral glycoproteins with multiple host cell surface receptors. A significant amount of research has been devoted toward identifying these glycoprotein and cellular receptor interactions as the broad cellular tropism of HCMV suggests a highly regulated yet adaptable process that controls viral binding and penetration. However, deciphering the initial binding and cellular receptor activation events by viral glycoproteins remains challenging. The relatively low abundance of receptors and/or interactions with glycoproteins during viral entry, the hydrophobicity of membrane receptors, and the rapid degradation and recycling of activated receptors have complicated the analysis of HCMV entry and the cellular signaling pathways initiated by HCMV engagement to the host membrane. Here, we describe the different methodologies used in our laboratory and others to analyze the interactions between HCMV glycoproteins and host cellular receptors during the entry stage of the viral life cycle.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Citomegalovirus/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Línea Celular/virología , Citomegalovirus/genética , Fibroblastos/metabolismo , Humanos , Cultivo Primario de Células/métodos , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
4.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32878887

RESUMEN

Key to the viral dissemination strategy of human cytomegalovirus (HCMV) is the induction of monocyte survival, where monocytes are normally short-lived cells. Autophagy is a cellular process that preserves cellular homeostasis and promotes cellular survival during times of stress. We found that HCMV rapidly induced autophagy within infected monocytes. The early induction of autophagy during HCMV infection was distinctly required for the survival of HCMV-infected monocytes, as repression of autophagosome formation led to cellular death of infected cells but had no effect on the viability of uninfected monocytes. The inhibition of caspases was insufficient to rescue cell viability of autophagy-repressed infected monocytes, suggesting that autophagy was not protecting cells from apoptosis. Accordingly, we found that HCMV blocked the activation of caspase 8, which was maintained in the presence of autophagy inhibitors. Necroptosis is an alternative form of cell death triggered when apoptosis is impeded and is dependent on RIPK3 phosphorylation of MLKL. Although we found that HCMV activated RIP3K upon infection, MLKL was not activated. However, inhibition of autophagy removed the block in RIPK3 phosphorylation of MLKL, suggesting that autophagy was protecting infected monocytes from undergoing necroptosis. Indeed, survival of autophagy-inhibited HCMV-infected monocytes was rescued when MLKL and RIPK3 were suppressed. Taken together, these data indicate that HCMV induces autophagy to prevent necroptotic cell death in order to ensure the survival of infected monocytes and thus facilitate viral dissemination within the host.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world, with a seroprevalence of 40 to 100% depending on geographic location. HCMV infection is generally asymptomatic, but can cause severe inflammatory organ diseases in immunocompromised individuals. The broad array of organ diseases caused by HCMV is directly linked to the systematic spread of the virus mediated by monocytes. Monocytes are naturally programmed to undergo apoptosis, which is rapidly blocked by HCMV to ensure the survival and dissemination of infected monocytes to different organ sites. In this work, we demonstrate infected monocytes also initiate necroptosis as a "trap door" death pathway in response to HCMV subversion of apoptosis. HCMV then activates cellular autophagy as a countermeasure to prevent the execution of necroptosis, thereby promoting the continued survival of infected monocytes. Elucidating the mechanisms by which HCMV stimulates monocyte survival is an important step to the development of novel anti-HCMV drugs that prevent the spread of infected monocytes.


Asunto(s)
Autofagia/fisiología , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Monocitos/metabolismo , Apoptosis , Caspasa 8/metabolismo , Supervivencia Celular , Citomegalovirus/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Monocitos/virología , Necroptosis , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Estudios Seroepidemiológicos
5.
Proc Natl Acad Sci U S A ; 117(32): 19507-19516, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723814

RESUMEN

Previous analysis of postentry events revealed that human cytomegalovirus (HCMV) displays a unique, extended nuclear translocation pattern in monocytes. We determined that c-Src signaling through pentamer engagement of integrins is required upon HCMV entry to avoid sorting of the virus into late endosomes and subsequent degradation. To follow up on this previous study, we designed experiments to investigate how HCMV-induced signaling through the other major axis-the epidermal growth factor receptor (EGFR) kinase-regulates viral postentry events. Here we show that HCMV induces chronic and functional EGFR signaling that is distinct to the virus as compared to the natural EGFR ligand: EGF. This chronic EGFR kinase activity in infected monocytes is required for the proper subcellular localization of the viral particle during trafficking events, as well as for promoting translocation of viral DNA into the host nucleus. Our data indicate that HCMV glycoprotein B (gB) binds to EGFR at the monocyte surface, the virus and EGFR are internalized together, and gB remains bound to EGFR throughout viral postentry events until de-envelopment to promote the chronic EGFR kinase activity required for viral trafficking and nuclear translocation. These data highlight how initial EGFR signaling via viral binding is necessary for entry, but not sufficient to promote each viral trafficking event. HCMV appears to manipulate the EGFR kinase postentry, via gB-EGFR interaction, to be active at the critical points throughout the trafficking process that leads to nuclear translocation and productive infection of peripheral blood monocytes.


Asunto(s)
Núcleo Celular/metabolismo , Citomegalovirus/fisiología , Monocitos/virología , Proteínas del Envoltorio Viral/metabolismo , Núcleo Celular/virología , Células Cultivadas , ADN Viral/metabolismo , Endosomas/metabolismo , Endosomas/virología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Interacciones Huésped-Patógeno , Humanos , Monocitos/metabolismo , Unión Proteica , Transducción de Señal , Red trans-Golgi/metabolismo , Red trans-Golgi/virología
6.
Viruses ; 12(6)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560319

RESUMEN

Blood monocytes mediate the hematogenous dissemination of human cytomegalovirus (HCMV) in the host. However, monocytes have a short 48-hour (h) lifespan and are not permissive for viral replication. We previously established that HCMV infection drives differentiation of monocytes into long-lived macrophages to mediate viral dissemination, though the mechanism was unclear. Here, we found that HCMV infection promoted monocyte polarization into distinct macrophages by inducing select M1 and M2 differentiation markers and that Akt played a central role in driving differentiation. Akt's upstream positive regulators, PI3K and SHIP1, facilitated the expression of the M1/M2 differentiation markers with p110δ being the predominant PI3K isoform inducing differentiation. Downstream of Akt, M1/M2 differentiation was mediated by caspase 3, whose activity was tightly regulated by Akt in a temporal manner. Overall, this study highlights that HCMV employs the PI3K/SHIP1/Akt pathway to regulate caspase 3 activity and drive monocyte differentiation into unique macrophages, which is critical for viral dissemination.


Asunto(s)
Diferenciación Celular , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Infecciones por Citomegalovirus/fisiopatología , Citomegalovirus/fisiología , Macrófagos/citología , Monocitos/citología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
7.
J Virol ; 94(16)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32493823

RESUMEN

Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality among immunocompromised and immunonaive individuals. HCMV-induced signaling initiated during viral entry stimulates a rapid noncanonical activation of Akt to drive the differentiation of short-lived monocytes into long-lived macrophages, which is essential for viral dissemination and persistence. We found that HCMV glycoproteins gB and gH directly bind and activate cellular epidermal growth factor receptor (EGFR) and integrin ß1, respectively, to reshape canonical Akt signaling within monocytes. The remodeling of the Akt signaling network was due to the recruitment of nontraditional Akt activators to either the gB- or gH-generated receptor signaling complexes. Phosphoinositide 3-kinase (PI3K) comprised of the p110ß catalytic subunit was recruited to the gB/EGFR complex despite p110δ being the primary PI3K isoform found within monocytes. Concomitantly, SH2 domain-containing inositol 5-phosphatase 1 (SHIP1) was recruited to the gH/integrin ß1 complex, which is critical to aberrant Akt activation, as SHIP1 diverts PI3K signaling toward a noncanonical pathway. Although integrin ß1 was required for SHIP1 recruitment, gB-activated EGFR mediated SHIP1 activation, underscoring the importance of the interplay between gB- and gH-mediated signaling to the unique activation of Akt during HCMV infection. Indeed, SHIP1 activation mediated the increased expression of Mcl-1 and HSP27, two Akt-dependent antiapoptotic proteins specifically upregulated during HCMV infection but not during growth factor treatment. Overall, our data indicate that HCMV glycoproteins gB and gH work in concert to initiate an HCMV-specific signalosome responsible for the atypical activation of Akt required for infected monocyte survival and ultimately viral persistence.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world regardless of socioeconomic conditions and geographic locations with a seroprevalence reaching up to 100% in some developing countries. Although asymptomatic in healthy individuals, HCMV can cause severe multiorgan disease in immunocompromised or immunonaive patients. HCMV disease is a direct consequence of monocyte-mediated systematic spread of the virus following infection. Because monocytes are short-lived cells, HCMV must subvert the natural short life-span of these blood cells by inducing a distinct activation of Akt, a serine/theonine protein kinase. In this work, we demonstrate that HCMV glycoproteins gB and gH work in tandem to reroute classical host cellular receptor signaling to aberrantly activate Akt and drive survival of infected monocytes. Deciphering how HCMV modulates the cellular pathway to induce monocyte survival is important to develop a new class of anti-HCMV drugs that could target and prevent spread of the virus by eliminating infected monocytes.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Células Cultivadas , Citomegalovirus/patogenicidad , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Receptores ErbB/metabolismo , Interacciones Huésped-Patógeno , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Activación Transcripcional , Proteínas del Envoltorio Viral/fisiología , Proteínas Virales de Fusión/metabolismo , Internalización del Virus
8.
Antiviral Res ; 163: 82-90, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30668978

RESUMEN

Human cytomegalovirus (HCMV) remains a major public health burden domestically and abroad. Current approved therapies, including ganciclovir, are only moderately efficacious, with many transplant patients suffering from a variety of side effects. A major impediment to the efficacy of current anti-HCMV drugs is their antiviral effects are restricted to the lytic stage of viral replication. Consequently, the non-lytic stages of the viral lifecycle remain major sources of HCMV infection associated with transplant recipients and ultimately the cause of morbidity and mortality. While work continues on new antivirals that block lytic replication, the dormant stages of HCMV's unique lifecycle need to be concurrently assessed for new therapeutic interventions. In this review, we will examine the role that the PI3K/Akt/mTOR signaling axis plays during the different stages of HCMV's lifecycle, and describe the advantages of targeting this cellular pathway as an antiviral strategy. In particular, we focus on the potential of exploiting the unique modifications HCMV imparts on the PI3K/Akt/mTOR pathway during quiescent infection of monocytes, which serve an essential role in the dissemination strategy of the virus.


Asunto(s)
Citomegalovirus/metabolismo , Interacciones Huésped-Patógeno , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Células Cultivadas , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/virología , Humanos , Latencia del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...